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I. INTRODUCTION

In this paper two dual algorithms for the efficient

concurrent computation of partial sums are introduced and their

performance assessed. These algorithms are members of a novel

class of algorithms and architectures that is particularly suited

for arithmetic intensive, high throughout computing. This class

is based on partitioning the desired computations into parts that

can assume a relatively small number of distinct forms. The

redundancy resulting from the appearance of a given form more

than once is removed by computing each form only once. The

computation of all the distinct forms is performed first, and

then combined appropriately to obtain the desired results. The

partitioning size is parameterized by a partition parameter, or

parameters. A cost function is defined to take into account all

the relevant factors such as the number of operations, chip area,

and computation time. This cost function is, after partitioning,

a function of the partition parameter(s) with respect to which it

could be minimized. The minimum cost is attained at certain

optimal partition sizes, that should be used in the

implementat ion.

The partial sums computation of interest to us in this paper

are expressed in the form

Y BX + U(1

where the U, X, B, and Y are of dimensions Mxl, Nxl, MxN, and

Mxl, respectively. U and X are data vectors, and B is a binary

matrix of zeros and ones that define the desired partial sums Y.

The vector X contains all the data from which subsets for the
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various partial sums are selected. The vector U is addec cnly to

complete the duality of the two algorithms, and has an

insignificant effect on their behavior.

The first algorithm to compute these partial sums is based

on partitioning the output, Y. In section II the preliminary

version of this algorithm presented in 11, 23 is completed. A

dual algorithm based on partitioning X, the input, is presented

in section III where the complete duality of the two algorithms

is established. In assessing the performance of the algorithms,

some parameters are treated initially as continuous, while only

integer values could be used in the implementation. This is shown

in section IV to have an insignificant effect on the performance

of the algorithms. In section V various aspects of implementing

the algorithms are considered, with particular emphasize on

parallel and pipelined architectures for high throughput

appl icat ions.

Let the number of operations in direct computation of Y be

denoted by D. The proposed algorithms are shown to result in

replacing D by O(D/log D). The proportionality factr,

associated with this "order of" estimate is in the range 1 to 4

for various instances of the algorithms, as well as for their

combination as shown in section VI. Generalizations of this work

are suggested also in section VI, while suggestions for

applications and topics for further research conclude the paper

in section VII.
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II. ALGORITHM BASED ON OUTPUT PARTITIONING

In this section we discuss an algorithm that computes a set

of concurrent partial sums by partitioning them optimally into a

number of subsets. Each subset is computed independently,

applying the concept of redundancy removal which is best

introduced first through the following characteristic case,

essential to the algorithm.

A. First Char acteristic Case

Consider the computation of the partial sums of (1.1)

Y - BX + U (2.1)

for B with dimensions r x n, where

n m - 1 (2.2)

In addition, all the columns of B are distinct and none of all

zero entries. This implies that the entries of each columns of B

corresponds to the binary representation of one of the integers

<1, 2, ... , 2r - 1.. Also, each row of B contains exactly 2 r-1

ones and 2r-I - 1 zeros.

The algorithm is comprised of two steps that are applied

alternately until all partial sums are computede

Compute one of the partial sums. This requires All - 2r-I

additions and eliminates one row from B, and the corresponding

entry of U. There are now two identical columns of B

corresponding to each of the binary representations of the

numbers 1 1, 2, ... , Cr-i - 1> and one column with all zero

entries.

3
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Remove the zero column from B and the corresponding entry from X.

Remove one of each two identical columns of B after adding the

corresponding entries of X. This requires Ale 2r-I - 1

add it ions.

The two steps comprise one iteration of the algorithm. The

first execution of the algorithm requires Al = All + Ale = 2r - 1

and replaces r by r - 1. The ith execution requires Ail = 2r-i,

Aie - Cr- - 1 additions foe steps 1 and 2 respectively,

resulting in

A i  Ail + Pi2

- 2r-i+ l 
- 1, 1 - 1, C, ... , r. (2.3)

From eq. (2.2, 2.3) the total number of additions to compute all

partial sums is found to be

r
A(n) E Ai

i-1

S2(2r - 1) - r m 2n - r

2 Cn - log(n+1) = O(n) -: 2n (2.4)

where log is to the base 2 throughout this paper. The number of %

additions per output is then

C(n) - (2(2r - 1) - r)/r = 2(n/r) -

- 2(n/log(n+l)) - I - O(n/log n) - 2n/log n (2.5)

Since each row of B contains 2r-i ones in this

characteristic case, a direct computation of each partial sum

independently results in the following number of additions per

output

D(n) 2 Cr-i - (n + 1)/2 '0(n)r- n/2 (2.6) .5.

The efficiency of our approach in comparison to direct

4
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computation could be expressed by the ratio

( C(n)/D(n) - 4(n - (log(n+l))/2)/(n+l)log(n+l)

- 0(1/log n) 4/log n (2.7)

or equivalently by the expressions

4(n) - 0(1/log D(n)),

C(n) - O(D(n)/log D(n)) (2.8)

which indicate the type of computational savings achieved by the

proposed algorithm.

An important aspect of this algorithm is its invariance with

respect to the partitioning within the r outputs in steps I and 2

above. So, instead of computing one output at a time. followed by

merging inputs corresponding to redundant computation for the

remaining outputs, we could partition the r outputs into two sets

of rI and re outputs each. Due to the assumption of distinct

columns of B, and the carefully chosen n according to (2.2), the

computations involved in the rI and re outputs are mutually

exclusive and could be computed independently. The ri outputs

require 2r - 1 - (2r1 - 1) additions to add inputs corresponding

to identical columns of B1, followed by A(nl) additions as

determined by the above characteristic case, but with dimensions

nj and rl. Similar argument for the remaining re outputs lead to

A(n) - A(nj) + 2r - 1 - (2ri - 1) +

A(n 2,) + 2
r - 1 - (2r2 - 1) +

which, with r - r, + re lead to

A(n) - 2n - r

identically to (2.4). For n a power of 2, a scheme of

progressively finer partitioning, and combining data with

%W %% -- *W-* - -'I..,5K , -- . . " . . -



identical roles in the required computation is possible here. At

every step, the number of parallel computations doubles until all

outputs appear simultaneously at the last step. In the fastest

implementation of an adder tree to be discussed in the sequel,

and regardless of the partitioning method, and if all data

additions are performed by adder trues, then all the outputs will

be computed after a time period corresponding to r - I additions.

The dimensions of this characteristic case were carefully

chosen. Therefore, only the redundancy removal aspect of the

algorithm was applied. In the sequel we consider problems with

arbitrary dimensions and show how redundancy removal is combined

with optimal partitioning to result in a complete application of

the algorithm.

B. The General Case

To apply the above approach to the general case with

arbitrary dimensions (1.1), we partition the M partial sums Y,

and similarly U, into s sets Y1 , i = 1, 2, ... , s, of r partial

sums each. The parameters r and s are related by

M = rs (2.9)

Furthermore, we assume that r satisfies

N L 2r - I (2. 10)

For a worst case analysis, we assume that all the distinct 2r - 1

nonzero binary vectors are present in each Bi. For each group of

r partial sums we begin by executing step 2 as introduced above.

This requires N - (2r - 1) additions per Bi. The problem is now

identical to the characteristic 'case discussed above, and

therefore 2(ar - 1) - r additions per r partial sums are needed

6%
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to complete the computation. So the number of additiors per r

partial sums is, in this worst case analysis

A(N,r) - (N + a r - r - 1) (2.11)

Equivalently, the number of additions per output is

C(N,r) = (N + :r - r - 1)/r

- (N + 2r - 1)/r - 1 (2. 12)

There are at least two approaches to investigate the optimal

values of r at which C(N,r) attains its minimum. In the first

approach the minimum is found by treating r as a continuous

variable. The derivative of C with respect to r vanishes at

N - 2r(r in 2 - 1) + 1 (2.13)

at which C attains its minimum value. There is no explicit closed

form expression of r as a function of N that could be obtained

from eq. (2.13). However, such an expression is not essential in

applying the algorithm where only integer values of r are of

interest. The first integer value of r for which (2.10,2.13) are

simultaneously valid is 3. A table of the values of N

corresponding to r = 3, 4, ... could be formed to cover the range

of values of N of interest. The initial estimate

-l - log(N-1) (2. 14)

could be used either to identify the range of values of r that

are then used to generate a small table via (2.13), or as the

initial term in the iteration

rl.l - log(N-1) - log(r i ln - -1), i = 1, 2, ... (2.15)

which converges rapidly to the solution of (2.13). With r1 as

defined in (2.14), the next two iterations result in

7



re - log(N-1) - log(ln(N-1) - 1),

r3 - log(N-1) - log(lin(N-1) - ln(ln(N-1) - 1)) (2. 16)

From (2.12, 2.13) we obtain the minimum number of additions per

output corresponding to the optimal value of r

C - ((N-1)In 2 / (r in 2 - 1)) - 1 (2.17)

which with (2. 14, 2. 15) result in

C a! ((N - 1) / (log(N-1) -1)) - 1 - N / log N (2.18)

Direct computation requires an average of

D = N/2 (2. 19)

additions per partial sum. The efficiency of the proposed

algorithm is characterized by

= C/D -: 2/log N (2.20)

which is a conservative estimate of its performance, since we are

comparing our worst case to the average direct computation. In

this algorithm, all the blocks of r partial sums are computed

independently. Redundancy is removed only within each block.

Further redundancy could be removed based on computation shared

between blocks. This additional redundancy is insignificant and

its removal would require complicated communication schemes. A

second approach in investigating the optimal values of r is

presented in section IV, where r and N are assumed to be

integers.

8
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III. A DUAL ALGORITHM

In this section we introduce an algorithm based on, input

partitioning. This algorithm is a dual to the one discussed above

with the input and the output roles exchanged in all significant

expressions and statements. There are, however, differences in

implemert ing the two algorithms. There is also a subt le

difference in generalizing the two algorithms to operations other

than addition. These differences will be addressed in the

following sections.

The following characteristic case is of essence since it

illustrates the redundancy removal aspect of this dual algorithm. e

A. -:e:or~d Chara,:ter ,: CaSe

Consider the computation of the partial sums of (1.1)

Y - 9X + U (3.1)

but for B with dimensions n x r, where

n - 2r 1 (3.2)

In addition, all the rows of B are distinct and none of all zero

entries. This implies that the entries of each row of B

correspond to the binary representation of one of the integers

(1, ~, .. 2., - 1>. Also, each column of B contains exactly

ar-1 ones and 2r-1 - 1 zeros. B is, in this case, the trarspose

of that in the first characteristic case. Let us first ignore U.

Computing Y in this case amounts to computing all the partial

sums of the entries of X.

Let P(r) be the number of additions required to compute all

the 2r I 1 nonzero partial suris of r elements of a set. If :re

% .% % %, %.. .. .. * %



more element is added to the set, then the best that could be

done is to add the new element to each of the existing partial

sums. This requires 2r - I additions. This is the smallest number

of additions needed to generate all the additional partial sums

that include the new element. The result is the following

recursion

P(r+l) = P(r), + (2r - 1) (3.3)

which results in

P(r) = 2 r - r - 1 (3.4)

From eq. (3.2, 3.4) the total number of additions to compute all

partial sums is found to be, after including n additions for U

P(n) = 2(2 r - 1) - r = 2n - r

= 2n - log (n+1) = O(n) -: 2n (3.5) S"

which is identical to (2.4), but with r and n indicating the

number of columns and rows of B respectively in this dual case.

The above result could also be obtained if the r inputs are

partitioned into two subsets of rt and re inputs each,

respectively. All the partial sums of each subset are computed,

and the results combined to obtain Y. Regardless of the method of w

partitioning, the fastest implementation would result in all the

outputs after a time corresponding to r - 1 additions, with some

components of Y computed even sooner. The number of additions per

input is then

C(n) - (2(2r - 1) - r)/r - 2(n/r) - 1

- 2(n/log(n+l)) - 1 2n/log n (3.6)

Direct computation of the partial sums requires a number of

additions that is equal to the number of ones in B. This is easy
.5-

to see, since each row of B corresponds to a number of additions

10 ,"!
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of entries of X that is one less thar, the number of ores ir that

row. An extra addition is required to include the corresponding

element of U, thus resulting in one element of Y. Since B in this

characteristic case is the transpose of that of the first

characteristic case, it has the same total number of ones of

r2r-1. The number of additions per input is, therefore

D(n) 2 ar-i - (n + 1) /2 !- r,/2 (3.7)

which is identical to (2.6), but with the roles of the rows and

columns interchanged.

B. The General Case

To apply the above approach to the general case with

arbitrary dimensions (1.1), we need to combine the redundancy

removal aspect of the algorithm as introduced above with optimal

partitioning. Let the N inputs of X be partitioned into s sets

X i, i = 1, 2, ... , s, of r elements each. The parameters r and s

are related by

N = rs (3.8)

Furthermore we assume that r satisfies

M ) ar - 1 (3.9)

To compute all the partial sums of each of the s sets of entries

of the Xils, a total of (2r - r - 1)N/r additions are needed.

This follows from (3.4) and (3.8). Each partial sum,

corresponding to one entry of Y, could then be obtained at the

cost of N/r extra additions. This includes the proper entry of U.

The total of the extra additions to obtain Y is NM/r. The total

additions to comnoute all partial sums is then

11



A (M, N, r) - (2r - r - 1) N/r - MN/r (3.10)

and the number of additions per r Inputs is .

A(M,r) - (M + er - r - 1) (.11)

which is the dual of (2.11) with M replacing N. Equivalently, the

number of additions per input is

C(M,r) - (M + 2r - r - 1)/r

- (M + 2r - 1)/r - 1 (3. 12)

which is also the dual of (2.12). The above establishes the I

complete duality of the two algorithrmis. The remainder of our

analysis is identical, via duality and proper exchange of Il

variables, to that of section II. Comments on redundancy between

blocks are similar to those made at the end of section II, but

with the roles of N and M interchanged.

IV. EFFECT OF INTEGER PARAMETERS

There are several effects of restricting the parameters N,

M, and r to integer values. We will be concerned mainly with the

first algorithm of output partitioning, since duality extends the

results immediately to the second algorithm. Let us ivestigate

first the effect of restricting r and N to be integers. Equation

(2.12) could be rewritten in the form

C(N,r) - N/r + (2r - r - 1)/r (4.1)

This could be viewed as a straight line function of N with a

slope of 1/r and a displacement of (2r - r - 1)/r, both of which

are parameterized by r. Let us generate these straight lines for

r 1, 2, .... The lowest upper bound of this collection of

straight lines is a piecewise linear curve, each segment f which

is a part of one of the above straight lines that corresponds to

.J*'
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a particular integer value of r as depicted in Fig. 1. This

piecewise linear curve represents the least possible number of

additions per output C as a function of just N, since r was used

as a parameter in generating this lowest upper bound. The

vertices of the resulting piecewise linear curve are the points

at which C(N,r) - C(N,r I), and occurs at Nr where

Nr- 2r(r - 1) + 1 (4.2)

The range of values of N for which a given value of r should be

used is NE[NrlI, Nr]. This range, followed next by the related

difference and ratio

2'-I (r-2) + 1 < N ( 2r(r-I) + 1,

Nr - Nt- 1 = r 2r-1,

Nr/Nr- = (2r(r' - 1 ) + 1)/(2r- 1(r+2) 4 1) a 2 (4.3)

should be used in assessing the value, or range of values of r

that correspond to the range of values of N in a given

application or problem.

One way of relating the optimization of r as a continuous

variable to that of integer r is as follows. Every segment of

the piecewise linear curve defined above is a tangent to the

curve of minimal C as a function of N that results from treating

r as a continuous variable. The two curves are farthest aoart at

Nr, r - 1, 2, .... At these points we get from (4.1, 4.2)

C - 2r - 1 - (Nr - 1)/(r-1) - I

- O(N/log N) a N/log N (4.4)

which exhibits the same asymptotic behavior as for continuous r.

This indicates the insensitivity of the optimal performance to

small changes in r.

13
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The effect of restricting N to be integer values is simply

incorporated by considering only those points on the above

piecewise linear curve that correspond to integer N.

The last issue of importance here concerns M and s. It is obvious

that the optimization makes sense only if MLr in the first

algorithm, and N)r for the dual one. Other than that, if s is not

an integer, then all the partitioned parts of the problem will

not be of the same size. In this case we simply use one of the

nearest integer values to s, and only minor deviation from the

optimal behavior should result. We can limit the difference to

only one of the partitioned systems, or try to make them all as

close as possible with a difference of one row (column in the

dual case) at the most between any pair.

V. IMPLEMENTATION CONSIDERATIONS

In this section architectures that implement the above

algorithms are introduced. Only the basic concept of each

implementat ion are considered, since details are better left for

individual applications.

A. The Output Partitionin Al1,rithm

Since every group of r partial sums is evaluated

independently, it suffices to consider the implementation of one

such group. A parallel architecture is then obtained by

replicating this implementation s times. Next, two types of

implementation are discussed.

If the data is obtained seauentially, then a pipeliried

architecture is particularly suitable. We examine here an

14
V

*0~~ * ~ * *. .. '. . -. .~%



architecture that implements the alqorithm for only c.ne group of

r partial sums, which is then replicated in parallel or used

sequentially for the complete implementation. This architecture

is based on a RAM and an adder. Each data item is associated with

the corresponding column of Bi which is used as an address tag.

The contents of the memory at this address are read, added to the

data and restored in the same location. It is clear that this

simple architecture adds data corresponding to identical columns

of Bi. After all the data is obtained, we begin computing the

partial sums by reading all the data from locations with 1 as the

last bit of their address and accumulating it, using the adder.

The data is then read, the last bit of its address tag removed,

and then applied to a similar memory-adder architecture but with

half the previous memory size. clearly, the above implements the

two steps of the algorithm. The above approach could be modified

in a number of ways to adapt it to a particular environment, such

as a microprocessor implementation or a particular bus

architect ure.

Our purpose here is to present only the basic approaches,

but since high throughput applications are of particular

interest, the following pipelined architecture is of particular

importance.

The data is passed only once in the above memory-adder. The

data read from the memory adder is obtained in the desired order

of an increasing address tag. Since the data is now well ordered,

and with distinct address tags, the partial sums could be

computed in an adder tree that is structured to implement the

15



steps of the algorithm as depicted in Fig. 2. This adder tree carl
P

serve several memory-adders interfaced to it via serial in /

parallel out shift registers.

B. Th. Input Partitioning AJ.,7riths

This algorithm is naturally suited for parallel

implementation. All the partil sums of each group of r inputs

are computed independently, and each output is obtained by

collecting one of the partial sums from each input group and one

of the entries of U. We will consider the computation of all the

partial sums of only one of the groups of r inputs, since this .f

could be used as the building blnck of various implementations.

An elegant structured adder tree architecture that computes all

the partial sums of r numbers is based on the recursion of

eq. (3.3). As illustrated in Fig. 3, the tree architecture

implements the recursion directly. The three partial sums of the

first two inputs are added each to the third input, to result in V
e#

the desired seven partial surs. This "nesting" could be repeated

as many times as needed. A parallel architecture based on copies

of such a tree is obvious. A pipelined architecture is also

possible, where the sets of r input are applied sequentially to

one tree. Of course all the r inputs of each set are applied in

parallel to the tree.

16
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VI. COMPARISONS AND GENERALIZATIONS

In this section, we consider the performance of the above

two algorithms when they are both available simultaneously. Also,

generalization of the algorithms and their cost functions are

d iscussmed.

A. Perfrmance of The Combzned A1orithu;

The total number of additions to compute Y of (1.1) via the

output partitioning algorithm could be readily shown from the

analysis in section II to satisfy

At - O(MN/log N) -: MN/log N (6.1)

while for input partitioning we obtain

At - O(MN/log M) 2: MN/log M (6.2)

The performance of the two algorithms, combined, is determined by

At 3 MN/maxwlog N, log M} (6.3)

which results in

A t '! 2MN/log NM (6.4)

as a consepuence of the obvious inequality

MN/max{log N, log M} ( fMN/(log N - log M) = 2MN/log NM

The total number of additions eeQuired for direct computation is,

in the average

Dt - MN/2 (6.5)

The efficiency of the combined algorithms is then determined by

At/ Dt -: 4/log NM (6.6)

which is achieved by using the output partitioning algorithm if

N)M and its dual, the input partitioning one if M)N. The two

* algorithms are combined here orv in the sense that they are both

17
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available. Only one of them in used, however, in any given

instance as determined by the values, or range of values of M and

N. Of course, for the case of M = N the two algorithms are

equally effective, and only other implementation considerations

could favor either.

B. Generalizations

The output partitioning algorithm is applicable to

concurrent partial computations under any operation that is both

associative and commutative. The addition is only one such

operation. Commutativity is required since the algorithm might

perform computations on the input data in other than the order in

which it was given. The dual algorithm however could be applied

without requiring commutativity and is therefore applicable in

computing expressions in any associative operation. For example

it could be used in computing partial products of a set of

matrices that are not necessarily commutative. It is also

Possible to apply these alqorithrms to expressions in finite

fields and rings as well as Bc:lean alqebra ones.

The cost function used need not be restricted to the number

of operations. For example in VLSI applications, a properly

defined cost function might include terms to reflect area and

time delay. Also several partition parameters might be present in

the cost function.

18



VII. CONCLUSION

Two novel algorithms for simultaneous computation of a large

number of partial sums are introduced and their performance

assessed. The direct computation of D operations are replaced by

O(D/log D). The new approach is based on a new concept of optimal

partitioning and redundancy removal in arithmetic intensive, high

throughput computing that is expected to be the basis of a new

class of algorithms. This factor of 0(1/log D) reduction in the

required computation appears to be generic to the new class of

algorithms and is expected to appear in their application to

other problems such as vector matrix multiplication and other

linear algebra operations.

The new algorithms represent a departure from brute force

parallel computation where inherent redundancy is not detected or

removed. The resulting architectures admit of systolic

implementation in part, but also require some form of

broadcasting certain computations . The arguments for systolic

processing [33 are.valid, but for sufficiently large pr:blems,

the removal of redundancy via the new algoithmns could result in

fundamental improvement. For example, a preliminary assessment of

an algorithm of the new class for a parallel vector multiplier

acc-.aulator chip indicates that with VHSIC II implementation, at

least three times more multipliers could be accommodated in

comparison to direct implementation. The new approach is flexible

and could be optimized under various cost functions, such as chip

area, number of operations, time, time area product ... etc. It
I

also could be applied on various levels; system, board ,or chip.

19.
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Since broadcasting is particularly simple in optical comr puting,

the new algorithms could be of particular value. This could have

an impact on significant applications as in [43.

Application to FIR filters, utilizing their full structure,

should unify and improve the result in C5,63. Optimization of

various algorithms for large chips, combining the new algorithms W

with techniques of the type in C71 is also one of the objectives

of this research. Since the approach is directly applicable to

finite fields and rings, it could also be considered for optimal

coding / decoding architectures and for computations with a

variety of arithmetic systems. The applicability to Boolean

expressions mentioned in section VI could result in a new

approach to PLA chip design.

Finally, we propose the following topics for further

research a

I- Developing algorithms and architectures of the proposed class

for vector-matrix multiplication, other linear algebra

operations, and for key signal processing algorithms and filters.

2- Optimizing the algorithms for software and hardware

implementation, including advanced technology chip sets of VHSIC

II and GaAs types as well as those utilizing optical components.

3- Assessing the performance of the new algorithms and

architectures in their various implementation modes for certain

supercomputer systems and for key fast signal processing

applications, such as digital beam forming, target identification

and other radar and communication applications.

20
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Figure Captions

Fig. 1. The minimal number of operations C as a function of N.

Here r is treated as an integer parameter in the -

generation of this piecewise linear curve. The optimal

values of r arm indicated in the corresponding ranges of N. The

behavior of the input partitioning algorithm is obtained via

duality by just replacing N by M above. In this architecture, the

computation of all the outputs is completed after a time

corresponding to r-l additions, but some of the outputs are

Fig. 2. A structured adder tree architecture for a pipelined

implementation of the output partitioning algorithm. Several

memory-adders are served with one such tree. The outputs from

the memory-adders are multiplexed to the tree via a bank of

serial in/ parallel out shift registers. The depicted case is for

r 4 4. The data at the rightmost positicon has an address tag .
corresponding to 1, while the leftmost one corresponds to 15. In

such an architecture, all the outputs are available

symultaneously after a time corresponding to r-1 additions.

Fig. 3. A pipelined architecture for computing all the partial

sums of a set of numbers. The nested arrangement shown

illustrates how this architecture is based on the recursion of

(3.3). The depicted case corresponds to r - 3, where the three
partial sums of the first two innuts are added to the third input
to result in all the required seven partial surils.
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